

A SPECTRAL NAKAYAMA'S LEMMA

DORON GROSSMAN-NAPLES

Definition 0.1. Let $f : \tilde{R} \rightarrow R$ be a square-zero extension of \mathbb{E}_∞ -rings, and let N be an R -module. A *deformation* of N along f is an \tilde{R} -module \tilde{N} such that $R \otimes_{\tilde{R}} \tilde{N} \simeq N$.

Theorem 0.2 (Nakayama's Lemma, square-zero version). *Let $\tilde{R} \rightarrow R$ be a square-zero extension of \mathbb{E}_∞ -rings, and let N be an \tilde{R} -module such that $R \otimes_{\tilde{R}} N = 0$. Then $N = 0$.*

In other words, the zero module deforms uniquely along square-zero extensions.

Proof. We have a fiber sequence of \tilde{R} -modules

$$M \rightarrow \tilde{R} \rightarrow R$$

for some $M \in \text{Mod}_{\tilde{R}}$. Tensoring with N , we get

$$M \otimes_{\tilde{R}} N \rightarrow N \rightarrow 0,$$

so $N \simeq M \otimes_{\tilde{R}} N$.

On the other hand, we can instead tensor our fiber sequence with M to get

$$M \otimes_{\tilde{R}} M \rightarrow M \rightarrow M \otimes_{\tilde{R}} R.$$

By Proposition 7.4.1.14 of [1], the first map in this sequence is 0. Consequently, we obtain a splitting

$$M \otimes_{\tilde{R}} R \simeq M \oplus \Sigma(M \otimes_{\tilde{R}} M).$$

Tensoring this equivalence with N gives

$$M \otimes_{\tilde{R}} R \otimes_{\tilde{R}} N \simeq (M \otimes_{\tilde{R}} N) \oplus \Sigma(M \otimes_{\tilde{R}} M \otimes_{\tilde{R}} N);$$

but the left side of this equivalence is 0 since $R \otimes_{\tilde{R}} N = 0$, and the first summand on the right side is N . It follows that $N = 0$. \square

Definition 0.3. We say a morphism $\tilde{R} \rightarrow R$ of \mathbb{E}_∞ -rings is a *nilpotent extension* if it can be written as a finite composite of square-zero extensions. We say it is an *infinitesimal* extension if it can be written as a possibly infinite composite of square-zero extensions; that is to say, it is the limit of a possibly infinite sequence of square-zero extensions.

Corollary 0.4. *The zero module deforms uniquely along nilpotent extensions.*

Proof. Apply Theorem 0.2 and induct. \square

Date: January 13, 2026.

REFERENCES

- [1] Jacob Lurie. *Higher Algebra*. Sept. 18, 2017. URL: <https://www.math.ias.edu/~lurie/papers/HA.pdf>.